An Algebraic Characterization of Vacuum States in Minkowski Space. III. Poincaré Covariance
نویسندگان
چکیده
Employing the algebraic framework of local quantum physics,vacuum states in Minkowski space are distinguished by a property of geometric modular action. This property allows one to construct from any locally generated net of observables and corresponding state a continuous unitary representation of the proper Poincaré group which acts covariantly on the net and leaves the state invariant. The present results and methods substantially improve upon previous work. In particular, the continuity properties of the representation are shown to be a consequence of the net structure, and surmised cohomological problems in the construction of the representation are resolved by demonstrating that, for the Poincaré group, continuous reflection maps are restrictions of continuous homomorphisms.
منابع مشابه
An Algebraic Characterization of Vacuum States in Minkowski Space. III. Reflection Maps
Employing the algebraic framework of local quantum physics,vacuum states in Minkowski space are distinguished by a property of geometric modular action. This property allows one to construct from any locally generated net of observables and corresponding state a continuous unitary representation of the proper Poincaré group which acts covariantly on the net and leaves the state invariant. The p...
متن کاملm-Projections involving Minkowski inverse and range symmetric property in Minkowski space
In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...
متن کاملTranslation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space
In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.
متن کاملNew Lie-Algebraic and Quadratic Deformations of Minkowski Space from Twisted Poincaré Symmetries
We consider two new classes of twisted D=4 quantum Poincaré symmetries described as the dual pairs of noncocommutative Hopf algebras. Firstly we investigate the two-parameter class of twisted Poincaré algebras which provide the Liealgebraic noncommutativity of the translations. The corresponding star-products and new deformed Lie-algebraic Minkowski spaces are introduced. We discuss further the...
متن کاملYet More Ado about Nothing: the Remarkable Relativistic Vacuum State *
An overview is given of what mathematical physics can currently say about the vacuum state for relativistic quantum field theories on Minkowski space. Along with a review of classical results such as the Reeh–Schlieder Theorem and its immediate and controversial consequences, more recent results are discussed. These include the nature of vacuum correlations and the degree of entanglement of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003